Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557496

RESUMEN

Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.


Asunto(s)
Linfocitos T CD4-Positivos , Receptores Quiméricos de Antígenos , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD4-Positivos/inmunología , Centro Germinal/inmunología , Infecciones por VIH/terapia , Macaca mulatta/metabolismo , Receptor de Muerte Celular Programada 1 , Receptores Quiméricos de Antígenos/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia
2.
Mol Ther ; 32(4): 1000-1015, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38414243

RESUMEN

Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.


Asunto(s)
Infecciones por VIH , VIH-1 , Receptores Quiméricos de Antígenos , Ratones , Animales , Linfocitos T , Receptores Quiméricos de Antígenos/genética , Células Madre Hematopoyéticas , Inmunoterapia Adoptiva
3.
Mol Ther ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414244

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies have demonstrated immense clinical success for B cell and plasma cell malignancies. We tested their impact on the viral reservoir in a macaque model of HIV persistence, comparing the functions of CD20 CAR T cells between animals infected with simian/human immunodeficiency virus (SHIV) and uninfected controls. We focused on the potential of this approach to disrupt B cell follicles (BCFs), exposing infected cells for immune clearance. In SHIV-infected animals, CAR T cells were highly functional, with rapid expansion and trafficking to tissue-associated viral sanctuaries, including BCFs and gut-associated lymphoid tissue (GALT). CD20 CAR T cells potently ablated BCFs and depleted lymph-node-associated follicular helper T (TFH) cells, with complete restoration of BCF architecture and TFH cells following CAR T cell contraction. BCF ablation decreased the splenic SHIV reservoir but was insufficient for effective reductions in systemic viral reservoirs. Although associated with moderate hematologic toxicity, CD20 CAR T cells were well tolerated in SHIV-infected and control animals, supporting the feasibility of this therapy in people living with HIV with underlying B cell malignancies. Our findings highlight the unique ability of CD20 CAR T cells to safely and reversibly unmask TFH cells within BCF sanctuaries, informing future combinatorial HIV cure strategies designed to augment antiviral efficacy.

4.
Mol Ther Methods Clin Dev ; 30: 276-287, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37575091

RESUMEN

Hematopoietic stem cell gene therapy has been successfully used for a number of genetic diseases and is also being explored for HIV. However, toxicity of the conditioning regimens has been a major concern. Here we compared current conditioning approaches in a clinically relevant nonhuman primate model. We first customized various aspects of the therapeutic approach, including mobilization and cell collection protocols, conditioning regimens that support engraftment with minimal collateral damage, and cell manufacturing and infusing schema that reflect and build on current clinical approaches. Through a series of iterative in vivo experiments in two macaque species, we show that busulfan conditioning significantly spares lymphocytes and maintains a superior immune response to mucosal challenge with simian/human immunodeficiency virus, compared to total body irradiation and melphalan regimens. Comparative mobilization experiments demonstrate higher cell yield relative to our historical standard, primed bone marrow and engraftment of CRISPR-edited hematopoietic stem and progenitor cells (HSPCs) after busulfan conditioning. Our findings establish a detailed workflow for preclinical HSPC gene therapy studies in the nonhuman primate model, which in turn will support testing of novel conditioning regimens and more advanced HSPC gene editing techniques tailored to any disease of interest.

5.
Front Immunol ; 14: 1188018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207227

RESUMEN

HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Vacunas , Animales , Humanos , Macaca mulatta , Linfocitos T CD8-positivos
6.
Hepatol Commun ; 7(2): e0009, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074875

RESUMEN

BACKGROUND AND AIMS: Adeno-associated virus (AAV) vectors are widely used to deliver therapeutic transgenes to distinct tissues, including the liver. Vectors based on naturally occurring AAV serotypes as well as vectors using engineered capsids have shown variations in tissue tropism and level of transduction between different mouse models. Moreover, results obtained in rodents frequently lack translatability into large animal studies. In light of the increasing interest in AAV vectors for human gene therapy, an increasing number of studies are being performed in nonhuman primates. To keep animal numbers to a minimum and thus optimize the process of AAV capsid selection, we developed a multiplex barcoding approach to simultaneously evaluate the in vivo vector performance for a set of serotypes and capsid-engineered AAV vectors across multiple organs. APPROACH AND RESULTS: Vector biodistribution and transgene expression were assessed by quantitative PCR, quantitative reverse transcription PCR, vector DNA amplicon Illumina sequencing and vRNAseq in male and female rhesus macaques simultaneously dosed with a mixture of barcoded naturally occurring or engineered AAV vectors encoding the same transgene. As expected, our findings show animal-to-animal variation in both the biodistribution and tissue transduction pattern, which was partly influenced by each animal's distinctive serological status. CONCLUSIONS: This method offers a robust approach to AAV vector optimization that can be used to identify and validate AAV vectors for gene delivery to potentially any anatomical site or cell type.


Asunto(s)
Cápside , Dependovirus , Animales , Ratones , Femenino , Masculino , Humanos , Cápside/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Distribución Tisular , Macaca mulatta/genética , Macaca mulatta/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Terapia Genética/métodos
8.
Mol Ther ; 31(4): 1059-1073, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36760126

RESUMEN

We aim to develop an in vivo hematopoietic stem cell (HSC) gene therapy approach for persistent control/protection of HIV-1 infection based on the stable expression of a secreted decoy protein for HIV receptors CD4 and CCR5 (eCD4-Ig) from blood cells. HSCs in mice and a rhesus macaque were mobilized from the bone marrow and transduced by an intravenous injection of HSC-tropic, integrating HDAd5/35++ vectors expressing rhesus eCD4-Ig. In vivo HSC transduction/selection resulted in stable serum eCD4-Ig levels of ∼100 µg/mL (mice) and >20 µg/mL (rhesus) with half maximal inhibitory concentrations (IC50s) of 1 µg/mL measured by an HIV neutralization assay. After simian-human-immunodeficiency virus D (SHIV.D) challenge of rhesus macaques injected with HDAd-eCD4-Ig or a control HDAd5/35++ vector, peak plasma viral load levels were ∼50-fold lower in the eCD4-Ig-expressing animal. Furthermore, the viral load was lower in tissues with the highest eCD4-Ig expression, specifically the spleen and lymph nodes. SHIV.D challenge triggered a selective expansion of transduced CD4+CCR5+ cells, thereby increasing serum eCD4-Ig levels. The latter, however, broke immune tolerance and triggered anti-eCD4-Ig antibody responses, which could have contributed to the inability to eliminate SHIV.D. Our data will guide us in the improvement of the in vivo approach. Clearly, our conclusions need to be validated in larger animal cohorts.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Humanos , Animales , Ratones , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios/genética , Células Madre Hematopoyéticas , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia
9.
Nat Commun ; 13(1): 2035, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440648

RESUMEN

The bulk-boundary correspondence, which links a bulk topological property of a material to the existence of robust boundary states, is a hallmark of topological insulators. However, in crystalline topological materials the presence of boundary states in the insulating gap is not always necessary since they can be hidden in the bulk energy bands, obscured by boundary artifacts of non-topological origin, or, in the case of higher-order topology, they can be gapped altogether. Recently, exotic defects of translation symmetry called partial dislocations have been proposed to trap gapless topological modes in some materials. Here we present experimental observations of partial-dislocation-induced topological modes in 2D and 3D insulators. We particularly focus on multipole higher-order topological insulators built from circuit-based resonator arrays, since crucially they are not sensitive to full dislocation defects, and they have a sublattice structure allowing for stacking faults and partial dislocations.

10.
Mol Ther Methods Clin Dev ; 24: 30-39, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34977270

RESUMEN

Over the past decade, numerous gene-editing platforms which alter host DNA in a highly specific and targeted fashion have been described. Two notable examples are zinc finger nucleases (ZFNs), the first gene-editing platform to be tested in clinical trials, and more recently, CRISPR/Cas9. Although CRISPR/Cas9 approaches have become arguably the most popular platform in the field, the therapeutic advantages and disadvantages of each strategy are only beginning to emerge. We have established a nonhuman primate (NHP) model that serves as a strong predictor of successful gene therapy and gene-editing approaches in humans; our recent work shows that ZFN-edited hematopoietic stem and progenitor cells (HSPCs) engraft at lower levels than CRISPR/Cas9-edited cells. Here, we investigate the mechanisms underlying this difference. We show that optimized culture conditions, including defined serum-free media, augment engraftment of gene-edited NHP HSPCs in a mouse xenograft model. Furthermore, we identify intracellular RNases as major barriers for mRNA-encoded nucleases relative to preformed enzymatically active CRISPR/Cas9 ribonucleoprotein (RNP) complexes. We conclude that CRISPR/Cas9 RNP gene editing is more stable and efficient than ZFN mRNA-based delivery and identify co-delivered RNase inhibitors as a strategy to enhance the expression of gene-editing proteins from mRNA intermediates.

11.
J Clin Invest ; 131(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596054

RESUMEN

Over the past decade, chimeric antigen receptor (CAR) T cells have emerged as the prototype gene therapy for B cell leukemias. These so-called living drugs are derived from a patient's own cells, reprogrammed to recognize and destroy cancer cells, and then reintroduced into the body. The huge success of this therapy for cancer is rooted in pioneering clinical and preclinical studies, established more than three decades ago, focused on persistent HIV-1 infection. In this issue of the JCI, Bingfeng Liu et al. revisit HIV-specific CAR T cells in an important clinical study that supports broader application of this groundbreaking therapy. Although curative endpoints were not achieved, these findings lay the foundation for augmented approaches applying combinatorial technologies including antigen supplementation.


Asunto(s)
Infecciones por VIH , Neoplasias , Receptores Quiméricos de Antígenos , Terapia Genética , Infecciones por VIH/terapia , Humanos , Neoplasias/terapia , Receptores Quiméricos de Antígenos/genética , Linfocitos T
12.
Mol Ther ; 29(11): 3140-3152, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34601132

RESUMEN

Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.


Asunto(s)
Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Edición Génica , Terapia Genética , Animales , Estudios Clínicos como Asunto , Técnicas de Transferencia de Gen , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética/métodos , Terapia Genética/tendencias , Vectores Genéticos/genética , Humanos
13.
Mol Ther Methods Clin Dev ; 22: 304-319, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34485613

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies are being investigated as potential HIV cures and designed to target HIV reservoirs. Monoclonal antibodies (mAbs) targeting the simian immunodeficiency virus (SIV) envelope allowed us to investigate the potency of single-chain variable fragment (scFv)-based anti-SIV CAR T cells. In vitro, CAR T cells expressing the scFv to both the variable loop 1 (V1) or V3 of the SIV envelope were highly potent at eliminating SIV-infected T cells. However, in preclinical studies, in vivo infusion of these CAR T cells in rhesus macaques (RMs) resulted in lack of expansion and no detectable in vivo antiviral activity. Injection of envelope-expressing antigen-presenting cells (APCs) 1 week post-CAR T cell infusion also failed to stimulate CAR T cell expansion in vivo. To investigate this in vitro versus in vivo discrepancy, we examined host immune responses directed at CAR T cells. A humoral immune response against the CAR scFv was detected post-infusion of the anti-SIV CAR T cells; anti-SIV IgG antibodies present in plasma of SIV-infected animals were associated with inhibited CAR T cell effector functions. These data indicate that lack of in vivo expansion and efficacy of CAR T cells might be due to antibodies blocking the interaction between the CAR scFv and its epitope.

14.
Viruses ; 13(8)2021 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-34452474

RESUMEN

Selection of a pre-clinical non-human primate (NHP) model is essential when evaluating therapeutic vaccine and treatment strategies for HIV. SIV and SHIV-infected NHPs exhibit a range of viral burdens, pathologies, and responses to combinatorial antiretroviral therapy (cART) regimens and the choice of the NHP model for AIDS could influence outcomes in studies investigating interventions. Previously, in rhesus macaques (RMs) we showed that maintenance of mucosal Th17/Treg homeostasis during SIV infection correlated with a better virological response to cART. Here, in RMs we compared viral kinetics and dysregulation of gut homeostasis, defined by T cell subset disruption, during highly pathogenic SIVΔB670 compared to SHIV-1157ipd3N4 infection. SHIV infection resulted in lower acute viremia and less disruption to gut CD4 T-cell homeostasis. Additionally, 24/24 SHIV-infected versus 10/19 SIV-infected animals had sustained viral suppression <100 copies/mL of plasma after 5 months of cART. Significantly, the more profound viral suppression during cART in a subset of SIV and all SHIV-infected RMs corresponded with less gut immune dysregulation during acute SIV/SHIV infection, defined by maintenance of the Th17/Treg ratio. These results highlight significant differences in viral control during cART and gut dysregulation in NHP AIDS models and suggest that selection of a model may impact the evaluation of candidate therapeutic interventions for HIV treatment and cure strategies.


Asunto(s)
Antirretrovirales/uso terapéutico , Tracto Gastrointestinal/inmunología , Homeostasis , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Respuesta Virológica Sostenida , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Enfermedad Aguda , Animales , Tracto Gastrointestinal/fisiopatología , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Linfocitos Intraepiteliales/inmunología , Cinética , Macaca mulatta , Masculino , Modelos Animales , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
15.
Nature ; 589(7842): 376-380, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33473226

RESUMEN

Topological crystalline insulators (TCIs) can exhibit unusual, quantized electric phenomena such as fractional electric polarization and boundary-localized fractional charge1-6. This quantized fractional charge is the generic observable for identification of TCIs that lack clear spectral features5-7, including ones with higher-order topology8-11. It has been predicted that fractional charges can also manifest where crystallographic defects disrupt the lattice structure of TCIs, potentially providing a bulk probe of crystalline topology10,12-14. However, this capability has not yet been confirmed in experiments, given that measurements of charge distributions in TCIs have not been accessible until recently11. Here we experimentally demonstrate that disclination defects can robustly trap fractional charges in TCI metamaterials, and show that this trapped charge can indicate non-trivial, higher-order crystalline topology even in the absence of any spectral signatures. Furthermore, we uncover a connection between the trapped charge and the existence of topological bound states localized at these defects. We test the robustness of these topological features when the protective crystalline symmetry is broken, and find that a single robust bound state can be localized at each disclination alongside the fractional charge. Our results conclusively show that disclination defects in TCIs can strongly trap fractional charges as well as topological bound states, and demonstrate the primacy of fractional charge as a probe of crystalline topology.

16.
JCI Insight ; 6(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33427210

RESUMEN

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) with CCR5- donor cells is the only treatment known to cure HIV-1 in patients with underlying malignancy. This is likely due to a donor cell-mediated graft-versus-host effect targeting HIV reservoirs. Allo-HSCT would not be an acceptable therapy for most people living with HIV due to the transplant-related side effects. Chimeric antigen receptor (CAR) immunotherapies specifically traffic to malignant lymphoid tissues (lymphomas) and, in some settings, are able to replace allo-HSCT. Here, we quantified the engraftment of HSC-derived, virus-directed CAR T cells within HIV reservoirs in a macaque model of HIV infection, using potentially novel IHC assays. HSC-derived CAR cells trafficked to and displayed multilineage engraftment within tissue-associated viral reservoirs, persisting for nearly 2 years in lymphoid germinal centers, the brain, and the gastrointestinal tract. Our findings demonstrate that HSC-derived CAR+ cells reside long-term and proliferate in numerous tissues relevant for HIV infection and cancer.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Trasplante de Células Madre Hematopoyéticas , Inmunoterapia Adoptiva , Animales , Linaje de la Célula/inmunología , Modelos Animales de Enfermedad , Reservorios de Enfermedades/virología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/virología , Centro Germinal/inmunología , Centro Germinal/patología , Centro Germinal/virología , Infecciones por VIH/virología , VIH-1 , Humanos , Inmunohistoquímica , Macaca nemestrina , Masculino , Receptores Quiméricos de Antígenos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Trasplante Homólogo
17.
Elife ; 102021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33432929

RESUMEN

Autologous, CCR5 gene-edited hematopoietic stem and progenitor cell (HSPC) transplantation is a promising strategy for achieving HIV remission. However, only a fraction of HSPCs can be edited ex vivo to provide protection against infection. To project the thresholds of CCR5-edition necessary for HIV remission, we developed a mathematical model that recapitulates blood T cell reconstitution and plasma simian-HIV (SHIV) dynamics from SHIV-1157ipd3N4-infected pig-tailed macaques that underwent autologous transplantation with CCR5 gene editing. The model predicts that viral control can be obtained following analytical treatment interruption (ATI) when: (1) transplanted HSPCs are at least fivefold higher than residual endogenous HSPCs after total body irradiation and (2) the fraction of protected HSPCs in the transplant achieves a threshold (76-94%) sufficient to overcome transplantation-dependent loss of SHIV immunity. Under these conditions, if ATI is withheld until transplanted gene-modified cells engraft and reconstitute to a steady state, spontaneous viral control is projected to occur.


Asunto(s)
Edición Génica , VIH/fisiología , Trasplante de Células Madre Hematopoyéticas , Receptores CCR5/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Animales , Macaca nemestrina , Trasplante Autólogo
18.
Hum Gene Ther ; 32(1-2): 96-112, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32998579

RESUMEN

Adeno-associated virus (AAV) vectors such as AAV6, which shows tropism for primary human CD4+ T cells in vitro, are being explored for delivery of anti-HIV therapeutic modalities in vivo. However, pre-existing immunity and sequestration in nontarget organs can significantly hinder their performance. To overcome these challenges, we investigated whether immunosuppression would allow gene delivery by AAV6 or targeted AAV6 derivatives in seropositive rhesus macaques. Animals were immune suppressed with rapamycin before intravenous (IV) or subcutaneous (SC) delivery of AAV, and we monitored vector biodistribution, gene transfer, and safety. Macaques received phosphate-buffered saline, AAV6 alone, or an equal dose of AAV6 and an AAV6-55.2 vector retargeted to CD4 through a direct ankyrin repeat protein (DARPin). AAV6 and AAV6-55.2 vector genomes were found in peripheral blood mononuclear cells and most organs up to 28 days postadministration, with the highest levels seen in liver, spleen, lymph nodes (LNs), and muscle, suggesting that retargeting did not prevent vector sequestration. Despite vector genome detection, gene expression from AAV6-55.2 was not detected in any tissue. SC injection of AAV6 facilitated efficient gene expression in muscle adjacent to the injection site, plus low-level gene expression in spleen, LNs, and liver, whereas gene expression following IV injection of AAV6 was predominantly seen in the spleen. AAV vectors were well tolerated, although elevated liver enzymes were detected in three of four AAV-treated animals 14 days after rapamycin withdrawal. One SC-injected animal had muscle inflammation proximal to the injection site, plus detectable T cell responses against transgene and AAV6 capsid at study finish. Overall, our data suggest that rapamycin treatment may offer a possible strategy to express anti-HIV therapeutics such as broadly neutralizing antibodies from muscle. This study provides important safety and efficacy data that will aid study design for future anti-HIV gene therapies.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Proteínas de Repetición de Anquirina Diseñadas , Vectores Genéticos/genética , Humanos , Leucocitos Mononucleares , Macaca mulatta , Sirolimus/uso terapéutico , Distribución Tisular
19.
Mol Ther Methods Clin Dev ; 19: 438-446, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33294492

RESUMEN

Current approaches for hematopoietic stem cell gene therapy typically involve lentiviral gene transfer in tandem with a conditioning regimen to aid stem cell engraftment. Although many pseudotyped envelopes have the capacity to be immunogenic due to their viral origins, thus far immune responses against the most common envelope, vesicular stomatitis virus glycoprotein G (VSV-G), have not been reported in hematopoietic stem cell gene therapy trials. Herein, we report on two Fanconi anemia patients who underwent autologous transplantation of a lineage-depleted, gene-modified hematopoietic stem cell product without conditioning. We observed the induction of robust VSV-G-specific immunity, consistent with low/undetectable gene marking in both patients. Upon further interrogation, adaptive immune mechanisms directed against VSV-G were detected following transplantation in both patients, including increased VSV-G-specific T cell responses, anti-VSV-G immunoglobulin G (IgG), and cytotoxic responses that can specifically kill VSV-G-expressing target cell lines. A proportion of healthy controls also displayed preexisting VSV-G-specific CD4+ and CD8+ T cell responses, as well as VSV-G-specific IgG. Taken together, these data show that VSV-G-pseudotyped lentiviral vectors have the ability to elicit interfering adaptive immune responses in the context of certain hematopoietic stem cell transplantation settings.

20.
Blood ; 136(15): 1722-1734, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32614969

RESUMEN

Chimeric antigen receptor (CAR) T cells targeting CD19+ hematologic malignancies have rapidly emerged as a promising, novel therapy. In contrast, results from the few CAR T-cell studies for infectious diseases such as HIV-1 have been less convincing. These challenges are likely due to the low level of antigen present in antiretroviral therapy (ART)-suppressed patients in contrast to those with hematologic malignancies. Using our well-established nonhuman primate model of ART-suppressed HIV-1 infection, we tested strategies to overcome these limitations and challenges. We first optimized CAR T-cell production to maintain central memory subsets, consistent with current clinical paradigms. We hypothesized that additional exogenous antigen might be required in an ART-suppressed setting to aid expansion and persistence of CAR T cells. Thus, we studied 4 simian/HIV-infected, ART-suppressed rhesus macaques infused with virus-specific CD4CAR T cells, followed by supplemental infusion of cell-associated HIV-1 envelope (Env). Env boosting led to significant and unprecedented expansion of virus-specific CAR+ T cells in vivo; after ART treatment interruption, viral rebound was significantly delayed compared with controls (P = .014). In 2 animals with declining CAR T cells, rhesusized anti-programmed cell death protein 1 (PD-1) antibody was administered to reverse PD-1-dependent immune exhaustion. Immune checkpoint blockade triggered expansion of exhausted CAR T cells and concordantly lowered viral loads to undetectable levels. These results show that supplemental cell-associated antigen enables robust expansion of CAR T cells in an antigen-sparse environment. To our knowledge, this is the first study to show expansion of virus-specific CAR T cells in infected, suppressed hosts, and delay/control of viral recrudescence.


Asunto(s)
Antígenos Virales/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Huésped Inmunocomprometido , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Terapia Antirretroviral Altamente Activa/efectos adversos , Terapia Antirretroviral Altamente Activa/métodos , Modelos Animales de Enfermedad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...